
Linear Approximations

Let f be a function of two variables x and y de-

fined in a neighborhood of (a, b). The linear function

L(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)

is called the linearization of f at (a, b) and the

approximation

f(x, y) ≈ f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)

is called the linear approximation of f at (a, b).

The function f is said to be differentiable if

lim
x→a,y→b

|f(x, y)− L(x, y)|√
(x− a)2 + (y − b)2

= 0.

Theorem. If the partial derivatives fx and fy exist

in a neighborhood of (a, b) and are continuous at

(a, b), then f is differentiable at (a, b).
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Example. Show that f(x, y) = xexy is differen-

tiable at (1, 0) and find its linearization there. Then

use it to approximate f(1.1,−0, 1).

Solution. The partial derivatives are

fx(x, y) = exy + xyexy, fy(x, y) = x2exy,

fx(1, 0) = 1, fy(1, 0) = 1.

Both fx and fy are continuous, so f is differentiable

everywhere. The linearization is

L(x, y) = f(1, 0) + fx(1, 0)(x− 1) + fy(1, 0)(y − 0)

= 1 + 1(x− 1) + 1 · y = x + y.

The corresponding linear approximation is

xexy ≈ x + y.

It follows that f(1.1,−0.1) ≈ 1.1 − 0.1 = 1. In

comparison, f(1.1,−0.1) = 1.1e−0.11 ≈ 0.98542.
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Let f be a continuous function on an open do-

main G. Suppose that P (a, b) is a point in G. Let

h and k be real numbers such that the line segment

joining P (a, b) and Q(a+h, b+k) lies inside G. The

line segment PQ is represented by the parametric

equations

x = a + th, y = b + tk, 0 ≤ t ≤ 1.

Let F be the function defined by

F (t) = f(a + th, b + tk), 0 ≤ t ≤ 1.

Then F is a continuous function on [0, 1].

Suppose that f has continuous partial deriva-

tives up to order 2. Then F ′ and F ′′ are continuous

on [0, 1].
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Taylor’s Formula for Functions of Two Variables

By Taylor’s theorem we have

F (1) = F (0) + F ′(0)(1− 0) +
F ′′(c)

2!
(1− 0)2

for some c ∈ (0, 1).

Recall that x = a + th and y = b + tk. By the

chain rule we obtain

F ′(t) = fx
dx

dt
+ fy

dy

dt
= hfx + kfy.

Consequently,

F ′′(t) =
∂

∂x
(hfx + kfy)h +

∂

∂y
(hfx + kfy)k

= h2fxx + hkfyx + khfxy + k2fyy

= h2fxx + 2hkfyx + k2fyy.
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Let x = a + h and y = b + k. The first Taylor

polynomial of f at (a, b) is given by

T1(x, y) = F (0) + F ′(0)(1− 0)

= f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b).

Thus, T1(x, y) is just the linearization of f at (a, b).

Let R1(x, y) = f(x, y)−T1(x, y) be the remainder.

With h = x− a and k = y − b we have

R1(x, y) =
F ′′(c)

2!
(1− 0)2

=
1
2
[
h2fxx + 2hkfxy + k2fyy

]∣∣
(a+ch,b+ck)

,

where 0 < c < 1.

The second Taylor polynomial of f at (a, b)

is given by

T2(x, y) = f(a, b) + fx(a, b)h + fy(a, b)k

+
1
2
[
fxx(a, b)h2 + 2fxy(a, b)hk + fyy(a, b)k2

]
.
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Example. Let f(x, y) = ex sin(x− y), (x, y) ∈ IR2.

(a) Find the linearization of f at the point (0, 0)

and the corresponding remainder.

(b) Find the second Taylor polynomial of f at (0, 0).

Solution. We have

fx = ex sin(x− y) + ex cos(x− y),

fy = −ex cos(x− y),

fxx = 2ex cos(x− y),

fxy = −ex cos(x− y) + ex sin(x− y),

fyy = −ex sin(x− y).

Hence, f(0, 0) = 0, fx(0, 0) = 1, fy(0, 0) = −1. The

linearization of f at the point (0, 0) is

L(x, y) = f(0, 0) + fx(0, 0)x + fy(0, 0)y = x− y.
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The remainder is

R(x, y) =
1
2
[
2ecx cos(cx− cy)x2

+ 2
(
ecx sin(cx− cy)− ecx cos(cx− cy)

)
xy

− ecx sin(cx− cy)y2
]
,

where 0 < c < 1.

We have fxx(0, 0) = 2, fxy(0, 0) = −1, and

fyy(0, 0) = 0. Consequently, the second Taylor poly-

nomial of f at (0, 0) is

T2(x, y) = x− y +
1
2
(2x2 − 2xy) = x− y + x2 − xy.
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