Linear Approximations
Let f be a function of two variables x and y de-

fined in a neighborhood of (a,b). The linear function

L(z,y) = f(a,b) + fz(a,b)(x —a) + f,(a,b)(y —b)

is called the linearization of f at (a,b) and the

approximation

flz,y) = f(a,b) + fa(a,0)(x —a) + fy(a,b)(y — D)

is called the linear approximation of f at (a,b).
The function f is said to be differentiable if

f(z,y) — L(z,y)|

lim =0
vmay=b \/(z—a)? + (y — b)?

Theorem. If the partial derivatives f, and f, exist

in a neighborhood of (a,b) and are continuous at

(a,b), then f is differentiable at (a,b).



Example. Show that f(x,y) = ze™ is differen-
tiable at (1,0) and find its linearization there. Then
use it to approximate f(1.1,—0,1).

Solution. The partial derivatives are
fo(z,y) = € +aye™,  fy(z,y) = 2%,

f=(1,0) =1, f,(1,0) =1.
Both f, and f, are continuous, so f is differentiable

everywhere. The linearization is

L(z,y) = f(1,0) + fo(1,0)(z — 1) + f,(1,0)(y — 0)
=14+1z—-1)+1-y=z+y.
The corresponding linear approximation is
e ~x +y.
It follows that f(1.1,—-0.1) =~ 1.1 — 0.1 = 1. In

comparison, f(1.1,—0.1) = 1.1e7%! ~ 0.98542.



Let f be a continuous function on an open do-
main G. Suppose that P(a,b) is a point in G. Let
h and k£ be real numbers such that the line segment
joining P(a,b) and Q(a+ h,b+ k) lies inside G. The
line segment P() is represented by the parametric

equations

r=a+th, y=0b+1tk, 0<t<1.

Let F' be the function defined by

F(t) = f(a+th,b+tk), 0<t<1.

Then F' is a continuous function on |0, 1].
Suppose that f has continuous partial deriva-

tives up to order 2. Then F’ and I are continuous

on [0, 1].



Taylor’s Formula for Functions of Two Variables

By Taylor’s theorem we have

F(1) = F(0) + F'(0)(1 — 0) + F;EC) (1-0)>

for some ¢ € (0,1).

Recall that * = a +th and y = b + tk. By the

chain rule we obtain
dx dy
F'(t) = f,— — =hf, +kf,.

Consequently,

F/(t) = 5 (o KEh -+ 5 (fa + K1)k

— h2fa:w + hkfya: + khf:cy + kayy



Let z =a+ h and y = b+ k. The first Taylor
polynomial of f at (a,b) is given by
Ty (x,y) = F(0) + F'(0)(1 - 0)
= f(a,b) + fe(a,b)(z — a) + fy(a,0)(y — D).
Thus, T3 (x,y) is just the linearization of f at (a,b).
Let Ry(x,y) = f(x,y) —Ti(x,y) be the remainder.

With h =x —a and kK = y — b we have

F//(C)
2!

1
= 5 [tha:x + 2hkfajy =+ k2fyy] ‘(a—l—ch,b—I-C]f)7

where 0 < ¢ < 1.

Rl(xay) — (1 _0)2

The second Taylor polynomial of f at (a,b)

is given by

TQ(fcay) — f(CL?b) + fw(av b)h + fy(av b)k

+ %[fxa:(a, b)h2 + 2f:cy(a7 b)hk + fyy(&? b)kZ}



Example. Let f(z,y) = e®sin(z — y), (z,y) € R
(a) Find the linearization of f at the point (0,0)

and the corresponding remainder.

(b) Find the second Taylor polynomial of f at (0,0).

Solution. We have
fr =€e"sin(x — y) + e* cos(x — y),
fy = —e* cos(z — y),
fza = 2€” cos(z — y),
foy = —€“ cos(z —y) + e* sin(z — y),
fyy = —€”sin(z — y).

Hence, f(0,0) =0, f,(0,0) =1, f,(0,0) = —1. The

linearization of f at the point (0,0) is

L(z,y) = f(0,0) + f2(0,0)z + f,(0,0)y =z — .

6



The remainder is

1
R(xz,y) = 5 [2e°* cos(cx — cy)z”

+ 2(e“ sin(cx — cy) — € cos(cx — cy))zy
— e sin(cz — cy)y?],
where 0 < ¢ < 1.
We have f,,(0,0) = 2, f;,(0,0) = —1, and
fyy(0,0) = 0. Consequently, the second Taylor poly-

nomial of f at (0,0) is

1
Ty(w,y) =z —y+5(22° = 2zy) =2 —y +2° — 2y,



